Stereospecificity of Oligonucleotide Interactions Revisited: No Evidence for Heterochiral Hybridization and Ribozyme/DNAzyme Activity
نویسندگان
چکیده
A major challenge for the application of RNA- or DNA-oligonucleotides in biotechnology and molecular medicine is their susceptibility to abundant nucleases. One intriguing possibility to tackle this problem is the use of mirror-image (l-)oligonucleotides. For aptamers, this concept has successfully been applied to even develop therapeutic agents, so-called Spiegelmers. However, for technologies depending on RNA/RNA or RNA/DNA hybridization, like antisense or RNA interference, it has not been possible to use mirror-image oligonucleotides because Watson-Crick base pairing of complementary strands is (thought to be) stereospecific. Many scientists consider this a general principle if not a dogma. A recent publication proposing heterochiral Watson-Crick base pairing and sequence-specific hydrolysis of natural RNA by mirror-image ribozymes or DNAzymes (and vice versa) prompted us to systematically revisit the stereospecificity of oligonucleotides hybridization and catalytic activity. Using hyperchromicity measurements we demonstrate that hybridization only occurs among homochiral anti-parallel complementary oligonucleotide strands. As expected, achiral PNA hybridizes to RNA and DNA irrespective of their chirality. In functional assays we could not confirm an alleged heterochiral hydrolytic activity of ribozymes or DNAzymes. Our results confirm a strict stereospecificity of oligonucleotide hybridization and clearly argue against the possibility to use mirror-image oligonucleotides for gene silencing or antisense applications.
منابع مشابه
Catalytic Activities of Ribozymes and DNAzymes in Water and Mixed Aqueous Media
Catalytic nucleic acids are regarded as potential therapeutic agents and biosensors. The catalytic activities of nucleic acid enzymes are usually investigated in dilute aqueous solutions, although the physical properties of the reaction environment inside living cells and that in the area proximal to the surface of biosensors in which they operate are quite different from those of pure water. T...
متن کاملDNAzyme molecular beacon probes for target-induced signal-amplifying colorimetric detection of nucleic acids.
A novel DNAzyme molecular beacon (DNAzymeMB) strategy was developed for target-induced signal-amplifying colorimetric detection of target nucleic acids. The DNAzymeMB, which exhibits peroxidase activity in its free hairpin structure, was engineered to form a catalytically inactive hybrid through hybridization with a blocker DNA. The presence of target DNA leads to dissociation of the DNAzymeMB ...
متن کاملMapping of accessible sites for oligonucleotide hybridization on hepatitis delta virus ribozymes.
Semi-random libraries of DNA 6mers and RNase H digestion were applied to search for sites accessible to hybridization on the genomic and antigenomic HDV ribozymes and their 3' truncated derivatives. An approach was proposed to correlate the cleavage sites and most likely sequences of oligomers, members of the oligonucleotide libraries, which were engaged in the formation of RNA-DNA hybrids. The...
متن کاملDesulfurization Activated Phosphorothioate DNAzyme for the Detection of Thallium.
Thallium (Tl) is a highly toxic heavy metal situated between mercury and lead in the periodic table. While its neighbors have been thoroughly studied for DNA-based sensing, little is known about thallium detection. In this work, in vitro selection of RNA-cleaving DNAzymes is carried out using Tl(3+) as the target metal cofactor. Both normal DNA and phosphorothioate (PS)-modified DNA are tested ...
متن کاملA small ribozyme with dual-site kinase activity
Phosphoryl transfer onto backbone hydroxyls is a recognized catalytic activity of nucleic acids. We find that kinase ribozyme K28 possesses an unusually complex active site that promotes (thio)phosphorylation of two residues widely separated in primary sequence. After allowing the ribozyme to radiolabel itself by phosphoryl transfer from [γ-(32)P]GTP, DNAzyme-mediated cleavage yielded two radio...
متن کامل